/* * This file is part of LibCSS. * Licensed under the MIT License, * http://www.opensource.org/licenses/mit-license.php * Copyright 2007-8 John-Mark Bell */ #ifndef css_utils_h_ #define css_utils_h_ #include #include "utils/fpmath.h" #ifndef max #define max(a,b) ((a)>(b)?(a):(b)) #endif #ifndef min #define min(a,b) ((a)<(b)?(a):(b)) #endif #ifndef SLEN /* Calculate length of a string constant */ #define SLEN(s) (sizeof((s)) - 1) /* -1 for '\0' */ #endif #ifndef UNUSED #define UNUSED(x) ((x)=(x)) #endif static inline fixed number_from_css_string(const css_string *string, size_t *consumed) { size_t len; const uint8_t *ptr; int sign = 1; int32_t intpart = 0; int32_t fracpart = 0; int32_t pwr = 1; if (string == NULL || string->len == 0 || consumed == NULL) return 0; len = string->len; ptr = string->data; /* number = [+-]? ([0-9]+ | [0-9]* '.' [0-9]+) */ /* Extract sign, if any */ if (ptr[0] == '-') { sign = -1; len--; ptr++; } else if (ptr[0] == '+') { len--; ptr++; } /* Ensure we have either a digit or a '.' followed by a digit */ if (len == 0) { *consumed = 0; return 0; } else { if (ptr[0] == '.') { if (len == 1 || ptr[1] < '0' || '9' < ptr[1]) { *consumed = 0; return 0; } } else if (ptr[0] < '0' || '9' < ptr[0]) { *consumed = 0; return 0; } } /* Now extract intpart, assuming base 10 */ while (len > 0) { /* Stop on first non-digit */ if (ptr[0] < '0' || '9' < ptr[0]) break; /* Clamp to a max of 2^22 - 1 */ if (intpart < (1 << 22)) { intpart *= 10; intpart += ptr[0] - '0'; } ptr++; len--; } /* And fracpart, again, assuming base 10 */ if (len > 1 && ptr[0] == '.' && ('0' <= ptr[1] && ptr[1] <= '9')) { ptr++; len--; while (len > 0) { if (ptr[0] < '0' || '9' < ptr[0]) break; if (pwr < 1000000) { pwr *= 10; fracpart *= 10; fracpart += ptr[0] - '0'; } ptr++; len--; } fracpart = ((1 << 10) * fracpart + pwr/2) / pwr; if (fracpart >= (1 << 10)) { intpart++; fracpart &= (1 << 10) - 1; } } /* If the intpart is larger than we can represent, * then clamp to the maximum value we can store. */ if (intpart >= (1 << 21)) { fracpart = (1 << 10) - 1; intpart = (1 << 21) - 1; } *consumed = ptr - string->data; return FMULI(((intpart << 10) | fracpart), sign); } #endif